跳转至

经典论文 (Classic Papers)

一句话概述

广告技术领域的经典论文,涵盖 CTR 预估、出价优化、推荐系统、隐私计算等方向,是深入理解广告算法的必读材料。


CTR/CVR 预估

年份 论文 机构 核心贡献
2014 Practical Lessons from Predicting Clicks on Ads at Facebook Facebook GBDT+LR 组合模型
2016 Wide & Deep Learning for Recommender Systems Google Wide&Deep 架构
2017 DeepFM: A Factorization-Machine based Neural Network Huawei FM + Deep 端到端
2017 Deep & Cross Network for Ad Click Predictions Google 显式交叉网络 DCN
2018 DIN: Deep Interest Network for Click-Through Rate Prediction Alibaba Attention 建模用户兴趣
2019 DIEN: Deep Interest Evolution Network Alibaba 兴趣演化建模
2018 ESMM: Entire Space Multi-Task Model Alibaba CVR 样本选择偏差
2018 MMOE: Modeling Task Relationships in Multi-task Learning Google 多任务学习
2020 PLE: Progressive Layered Extraction Tencent 改进多任务学习
2019 DSIN: Deep Session Interest Network Alibaba Session 级兴趣建模
2019 FiBiNET: Feature Importance and Bilinear feature Interaction Sina 特征重要性 + 双线性交互
2021 DCN V2: Improved Deep & Cross Network Google DCN 改进版
2020 AutoInt: Automatic Feature Interaction Learning Peking Univ 自动特征交互

出价与预算优化

年份 论文 机构 核心贡献
2017 Bid Optimizing and Inventory Scoring in Targeted Online Advertising Yahoo 出价优化理论
2018 Budget Constrained Bidding by Model-free Reinforcement Learning Alibaba RL 出价
2018 Real-Time Bidding with Multi-Agent Reinforcement Learning UCL 多智能体 RTB
2019 Bid Optimization by Multivariable Control in Display Advertising Alibaba PID 控制出价
2020 OCPC: A Bidding Strategy for Sponsored Search Baidu oCPC 两阶段
2021 Auto-bidding in Real-Time Bidding Alibaba 自动出价框架

推荐与广告融合

年份 论文 机构 核心贡献
2020 Ads Allocation in Feed via Constrained Optimization Meta 信息流广告分配
2019 Deep Reinforcement Learning for Ad Allocation in Feed Alibaba RL 广告插入
2021 Jointly Optimizing Revenue and User Experience ByteDance 收入与体验平衡

搜索广告

年份 论文 机构 核心贡献
2013 DSSM: Learning Deep Structured Semantic Models Microsoft 语义匹配模型
2007 Predicting Clicks: Estimating the CTR of New Ads Microsoft 搜索广告 CTR 预估
2015 A Sub-linear, Massive-scale Look-alike Audience Extension Yahoo Lookalike 扩量

竞价机制

年份 论文 机构 核心贡献
2007 Internet Advertising and the Generalized Second-Price Auction Google/Yahoo GSP 竞价理论
2019 Reserve Price Optimization at Scale Facebook 底价优化
2021 From GSP to First-Price Auction 一价竞价迁移

隐私与联邦学习

年份 论文 机构 核心贡献
2017 Federated Learning: Strategies for Improving Communication Efficiency Google 联邦学习基础
2019 Federated Learning for Mobile Keyboard Prediction Google 联邦学习应用
2006 Calibrating Noise to Sensitivity in Private Data Analysis 差分隐私基础
2014 RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response Google 本地差分隐私

反作弊

年份 论文 机构 核心贡献
2012 Click Fraud Detection Microsoft 点击欺诈检测
2020 A Survey on Click Fraud in Online Advertising 点击欺诈综述

在线学习

年份 论文 机构 核心贡献
2013 Ad Click Prediction: a View from the Trenches Google FTRL 在线学习
2010 Web-Scale Bayesian Click-Through Rate Prediction Microsoft 贝叶斯 CTR 预估

Embedding 与表示学习

年份 论文 机构 核心贡献
2018 Billion-scale Commodity Embedding for E-commerce Recommendation Alibaba 大规模 Embedding
2019 Real-time Attention Based Look-alike Model Tencent 实时 Lookalike
2016 Deep Neural Networks for YouTube Recommendations Google YouTube 推荐系统

阅读建议

入门路线:
  1. LR → GBDT+LR (Facebook 2014)
  2. FM → DeepFM
  3. Wide & Deep (Google 2016)
  4. DIN → DIEN (Alibaba 2018-2019)
  5. ESMM (多任务学习)
  6. MMOE → PLE

进阶路线:
  7. 出价优化 (RL Bidding)
  8. 在线学习 (FTRL)
  9. 联邦学习
  10. 竞价机制理论