经典论文 (Classic Papers)¶
一句话概述¶
广告技术领域的经典论文,涵盖 CTR 预估、出价优化、推荐系统、隐私计算等方向,是深入理解广告算法的必读材料。
CTR/CVR 预估¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2014 | Practical Lessons from Predicting Clicks on Ads at Facebook | GBDT+LR 组合模型 | |
| 2016 | Wide & Deep Learning for Recommender Systems | Wide&Deep 架构 | |
| 2017 | DeepFM: A Factorization-Machine based Neural Network | Huawei | FM + Deep 端到端 |
| 2017 | Deep & Cross Network for Ad Click Predictions | 显式交叉网络 DCN | |
| 2018 | DIN: Deep Interest Network for Click-Through Rate Prediction | Alibaba | Attention 建模用户兴趣 |
| 2019 | DIEN: Deep Interest Evolution Network | Alibaba | 兴趣演化建模 |
| 2018 | ESMM: Entire Space Multi-Task Model | Alibaba | CVR 样本选择偏差 |
| 2018 | MMOE: Modeling Task Relationships in Multi-task Learning | 多任务学习 | |
| 2020 | PLE: Progressive Layered Extraction | Tencent | 改进多任务学习 |
| 2019 | DSIN: Deep Session Interest Network | Alibaba | Session 级兴趣建模 |
| 2019 | FiBiNET: Feature Importance and Bilinear feature Interaction | Sina | 特征重要性 + 双线性交互 |
| 2021 | DCN V2: Improved Deep & Cross Network | DCN 改进版 | |
| 2020 | AutoInt: Automatic Feature Interaction Learning | Peking Univ | 自动特征交互 |
出价与预算优化¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2017 | Bid Optimizing and Inventory Scoring in Targeted Online Advertising | Yahoo | 出价优化理论 |
| 2018 | Budget Constrained Bidding by Model-free Reinforcement Learning | Alibaba | RL 出价 |
| 2018 | Real-Time Bidding with Multi-Agent Reinforcement Learning | UCL | 多智能体 RTB |
| 2019 | Bid Optimization by Multivariable Control in Display Advertising | Alibaba | PID 控制出价 |
| 2020 | OCPC: A Bidding Strategy for Sponsored Search | Baidu | oCPC 两阶段 |
| 2021 | Auto-bidding in Real-Time Bidding | Alibaba | 自动出价框架 |
推荐与广告融合¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2020 | Ads Allocation in Feed via Constrained Optimization | Meta | 信息流广告分配 |
| 2019 | Deep Reinforcement Learning for Ad Allocation in Feed | Alibaba | RL 广告插入 |
| 2021 | Jointly Optimizing Revenue and User Experience | ByteDance | 收入与体验平衡 |
搜索广告¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2013 | DSSM: Learning Deep Structured Semantic Models | Microsoft | 语义匹配模型 |
| 2007 | Predicting Clicks: Estimating the CTR of New Ads | Microsoft | 搜索广告 CTR 预估 |
| 2015 | A Sub-linear, Massive-scale Look-alike Audience Extension | Yahoo | Lookalike 扩量 |
竞价机制¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2007 | Internet Advertising and the Generalized Second-Price Auction | Google/Yahoo | GSP 竞价理论 |
| 2019 | Reserve Price Optimization at Scale | 底价优化 | |
| 2021 | From GSP to First-Price Auction | — | 一价竞价迁移 |
隐私与联邦学习¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2017 | Federated Learning: Strategies for Improving Communication Efficiency | 联邦学习基础 | |
| 2019 | Federated Learning for Mobile Keyboard Prediction | 联邦学习应用 | |
| 2006 | Calibrating Noise to Sensitivity in Private Data Analysis | — | 差分隐私基础 |
| 2014 | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response | 本地差分隐私 |
反作弊¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2012 | Click Fraud Detection | Microsoft | 点击欺诈检测 |
| 2020 | A Survey on Click Fraud in Online Advertising | — | 点击欺诈综述 |
在线学习¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2013 | Ad Click Prediction: a View from the Trenches | FTRL 在线学习 | |
| 2010 | Web-Scale Bayesian Click-Through Rate Prediction | Microsoft | 贝叶斯 CTR 预估 |
Embedding 与表示学习¶
| 年份 | 论文 | 机构 | 核心贡献 |
|---|---|---|---|
| 2018 | Billion-scale Commodity Embedding for E-commerce Recommendation | Alibaba | 大规模 Embedding |
| 2019 | Real-time Attention Based Look-alike Model | Tencent | 实时 Lookalike |
| 2016 | Deep Neural Networks for YouTube Recommendations | YouTube 推荐系统 |